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ABSTRACT: In this paper, a mathematical model that describes the transmission dynamics of Schistosomiasis for human in 

case of existence of treatment is studied. In this study, the basic reproduction number R0 is used to discuss the stability of the 

disease-free equilibrium point and the existence of the endemic equilibrium point. Global stability of the system is also studied 

with the help of the Lyapunov function. The analysis indicates that the current model can undergo Hopf bifurcation, 

transcritical bifurcation and saddle-node bifurcation. Numerical simulations of the current model show that the disease 

transmissioncan be periodic when R0 increases through one, where the Hopf bifurcation occurs.  
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1. INTRODUCTION 

One of the most imperative reasons that progressed countries 

have become as beneficial as they are today is that the 

populace stays healthy and sickness free. It is not unknown 

that, understanding disease transmission characteristics of 

regions, communities and countries can lead to better 

approaches to controlling and to decreasing the transmission 

of these diseases. Schistosomiasis or bilharzia is a chronic 

disease caused by parasitic flatworms that its first identified 

by Theodor Bilharz in Egypt in 1851 [1,2]. It affects millions 

of people in communities and countries, where the public 

health remains problematic, especially in the Middle East, 

Southeast Asia, Africa, and South America. It's transmitted to 

humans when they contact with fresh-water contaminated by 

the parasites, where the parasite larvae rapidly pass via skin 

to bloodstream the infected humans.This disease without 

treatment reduces the abilities of the infected to work and in 

several cases can lead them to death, and in children, this 

disease can lead to anemia, stunting and a weak capacity to 

learn if not treated [3]. On the other hand, the control of 

Schistosomal bladder cancer and HIV/AIDS virus is related 

to the control and treatment of Schistosom iasis [4,5]. 

Therefore, it is necessary to control and prevent the 

Schistosomiasis transmission. There are some effective 

strategies for this control such as, drug treatment, health 

education and improved sanitation. 

It is well known that, the fields of Mathematical models and 

nonlinear dynamical systems are helpful in different areas, 

one of them is epidemiology, where they provide powerful 

tools to analyze the dynamic behavior of the diseases spread 

and control. Following the works of Macdonald [6], Nasell 

and Hirsch [7,8] different mathematical models have been 

created to study and analysis the transmission dynamics of 

Schistosomiasis, such as [8-16]. Some of these models with 

single host (human or snail), two hosts (human and snail) or 

three hosts (human, mammalian and snail) whereas other 

models with an age-structure in human hosts or snail hosts or 

with mating structure of snail or with time delay. Recently, 

Naji and Ridha [15] proposed and studied a mathematical 

model that describes the transmission of Schistosomiasis 

within the human with natural recovery rate. They observed 

that the system has only one type of attractor and the 

trajectory approaches either to disease free equilibrium point 

or to an endemic equilibrium point. 

    Keeping the above in view, in this Paper the model of Naji 

and Ridha is generalized to study the transmission of 

Schistosomiasis within the human in case of having a 

treatment by using the treatment function as given in [17]. 

The objective is to study the effect of the existence of 

treatment on the control the disease. On contrast to the work 

in [15], the basic reproduction number is determined and used 

in the study of the stability of the system. It is observed that 

the system has two type of attractors a stable point or a stable 

limit cycle. 

2. Model Formulation  

Keeping  the  above  literature  in view,  the  mathematical  

model  presented here is obtained by generalizing the model 

considered in [15], through using saturated treatment function 
  

     
instead of natural recover term. The objective is to 

understand the importance of treatment to control the disease. 

Accordingly the model will be in the form: 

 ̇   (    ),   (   )-     

 
  

     
          

 ̇      (    )  
  

     
            

 ̇                                                

          (1) 

Here, the host population (humans) is divided into two 

compartments namely  susceptible population and infected 

population, which denoted by x(t) and y(t) respectively, while 

z(t) represents the parasite population at time  . Moreover, 

the parameters of  system (1) with their descriptions are listed 

below: 

   : The maximum per capita birth rate of uninfected hosts 

   : The relative fecundity of an infected host 

   : The per capita density-dependent reduction in birth 

rate     : The natural death rate of the host populations 

   : The infection rate 

   : The parasite-induced excess death rate 

   : The release rate of the free parasites from infected 

hosts 

    : The natural death rate of parasites 
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   : The maximal medical resources supplied per unit of 

time 
    : The saturation factor that measures the effect of the 

infected being delayed for treatment. 

Clearly for      system (1) will be the same as the model 

considered in [15].According to the equations given in 

system (1), all the interaction functions are continuous and 

have a continuous partial derivatives. Therefore, they are 

Lipschitzian and hence the solution of system (1) exists and is 

unique. Moreover the solution of system (1) is bounded as 

shown in the following theorem. 

Theorem (1): All the solutions of the system (1) that initiate 

in the positive octant are uniformly bounded. 

Proof: Let  ( )   ( )   ( )   ( ) and   

    *            +, where ( ( )  ( )  ( )) are any 

solutions of system (1) with initial conditions,  ( )  
   ( )     and  ( )   . Then by differentiation M with 

respect to  , we get 

  

  
  (    ),   (   )-     

 (      )       

 

Since  (    ),   (   )-  
 

  
      Then  

  

  
 
 

  
     

 

Now by using Gronwall lemma [18], we can have 

   ( )  . ( )  
 

   
/      

 

   
   

Thus, for     we obtain     
 

   
. In consequence, all 

solutions of system (1) in   
  are uniformly bounded and thus 

the theorem is proved.        

 

3. Local Stability Analysis 

The objective of this section is to study the local stability 

analysis at all feasible equilibrium points. Now from the 

equations of system (1), it is clear that system (1) has three 

feasible equilibrium points. The vanishing equilibrium point 

that is given by    (      ) always exists. When the 

Schistosomiasis disease dies out naturally, then system (1) 

will have a disease-free equilibrium point that is given by 

   ( 
      ), where    

    

  
. Clearly,    exists provided 

that     . Moreover, it is well known that the threshold 

value that determines the stability of    is the basic 

reproduction number, which is the average number of 

secondary coexistences caused by a single infectious 

individual during their entire infectious lifetime [19]. Now in 

order to calculate the basic reproduction number   , we use 

the next generation matrix method [20]. Under the 

application of this method,   is the leading eigenvalue of the 

next generation operator 𝐹𝑉−1
, where 𝐹 and 𝑉 for system(1) 

are determined as 

𝐹  .    

  
/  𝑉  (

       
    

) 
 

From the direct calculation one can get that the eigenvalues 

of 𝐹𝑉−1
 are given by 

           
    

  (      )
  

 

Consequently, the basic reproduction number of system (1) is 

given by 

   
  (    )

    (      )
 (2) 

Clearly,      always under the existence condition of    . 

Finally, system (1) has a coexistence equilibrium (endemic 

equilibrium) point given by    ( 
       ), where 

   
  
  
(     

 

     
 
)   

   
 

  
  , 

(3) 

While    is a positive root of the following quartic 

polynomial 

   
     

     
           (4) 

Here,  

      
       

     
 [
    

  
    (    )  ]  

             , (    )   -    
 (    )  

    (    )
       

 

      (      )     , (    )

  -,(    )     -     
 

   (      )
    (      )    

and 

   
    

 

(  ) 
     (    )

  
  
   

     (   )
  
  
             

It follows that,    can be rewritten in term of    as  

   
(    )

 

    
 

(    )   

Hence, the necessary but not sufficient condition to have a 

unique positive root of Eq. (4) is given by  

     (5a) 

As consequences, the endemic equilibrium point    exists 

uniquely in the interior of   
 , if in addition to (5a) one set of 

the following sets of necessary and sufficient conditions hold: 

                 (5b) 

           (5c) 

                 (5d) 
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In the following three theorems, the local stability of the 

system (1) at the vanishing equilibrium point, the disease-free 

equilibrium point and endemic equilibrium point are studied 

respectively. 

Theorem(2): The vanishing equilibrium point    of system 

(1) is unstable saddle point when      and locally 

asymptotically stable if     . 

Proof: The Jacobian matrix of System (1) at    is  (  ) 
given by 

(

         
  (      )  
     

) (6) 

By finding the eigenvalues of the matrix (6), it is observed 

that the characteristic equation of (6) has three roots   
    (      ) and    . Clearly for      , we obtain 

all roots are negative and then    is locally asymptotically 

stable point. However, for      , we obtain      is 

positive and then    is unstable saddle point.                       ■ 

Theorem(3): The disease-free equilibrium point is locally 

asymptotically stable when      and unstable when 

    . 

Proof: The Jacobian matrix of system (1) at   , takes the 

form 

 (  )  (   )                  

(

         
        (   )      

  (      )    

     

)       (7) (6.7) 

While the characteristic equation of the matrix (7), takes the 

form 

(     ), 
  (       ) 

                                           -   
 (8) 

Under the existence condition, It follows that, 

                
   (    )    

However the other two eigenvalues have negative real part 

provided that 

                                                   

  (      )(    )    
  

Hence it's clear that, when     , all roots of Eq. (8) have 

negative real parts, while for     , Eq. (8) has at least one 

positive root. Therefore,   is locally asymptotically stable 

when      and unstable when     .                  ■ 

Theorem(4): The endemic equilibrium point    is locally 

asymptotically stable if the following conditions hold 

           
    (   )       (9a) 

   
 

(     
 ) 
 

    

     
 

(     
 ) 

 

          (   )    (9b) 

      
 

(     
 ) 

 (         
 

   (   )      )    (9c) 

      
 

(     
 ) 

 (         
 

   (   )      )  (9d) 

Proof: The Jacobian matrix of system (1) at   , takes the 

form 

 (  )  (   )    (10a) 

While the characteristic equation associated with Eq. (10a), 

takes the form 

      
           (10b) 

Here  

    (           ) 

                        

                      

      (             ) 

           (             ) 

             (             ) 

 (       )[                 
 ]

              (       )
 

 

and  

             
    (   )       

            
    (   )  

 
 

(     
 ) 
   

       
 ,       

        
   

 

     (     
 

(     
 ) 
)    

                       

The criterion of Routh Hurwitz for stability requires that 

          and            . It follows from the 

sign of the Jacobian elements  (  )and the sufficient 

condition (9a) that,     , while      provided that (9a)-

(9b) hold. Moreover, the conditions (9a)-(9b) together with 

the sufficient condition (9c) give us that    . Hence, the 

endemic equilibrium point   is locally asymptotically stable. 

This completes the proof.            ■ 
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4. Global Stability 

The objective of this section is to investigatethe global 

stability for the equilibrium points of system (1). For this 

purpose, we use the Lyapunov method as shown in the 

following theorems. 

Theorem (5): Suppose that   is locally asymptotically 

stable, then it's globally asymptotically stable provided that 

the following condition holds.  

          (11) 

Proof: Consider the following positive definite real valued 

function 

𝑉         

Straightforward computation shows that the derivative of  𝑉  

with respect to t is given by 

 𝑉 
  

 (    )  ,         -      

From the local stability condition  of    together with 

condition (11), it follows that 
   

  
   and this completes the 

proof.                ■ 

Theorem (6): Suppose that    is locally asymptotically 

stable, then it is globally asymptotically stable in the region 

   *(     )   
     ̅        +, where 

 ̅      *   
 

  (   )
(    )      (   )+ 

Proof: Consider the following positive definite real valued 

function 

𝑉  
 

 
(    )    (  

 

    
)       

Straightforward computation shows that the derivative of  𝑉  

with respect to t is given by 
 𝑉 
  

     (    )  ,  (   )(    ) 

    
 

     
-   (  (  

 

    
)   ) 

 
  

     
  (       (  

 

    
)   

   (      ) [
  

  
       ]   

    (    )          

Now for any initial point in the interior of    we obtain that 

 𝑉 
  

     (    )  

                (    )          

   (      ) [
  

  
       ]   

From      , it follows that 
   

  
  . Hence 𝑉  is globally 

asymptotically stable and the proof is finished.                  ■ 

Theorem (7): Assume that    is locally asymptotically 

stable, then it is globally asymptotically stable in the region 

that satisfy the following conditions.   

    √     

    √     

    √     

     

(12a) 

(12b) 

(12c) 

(12d) 

where 

     ,   
  (   )  -  (    )    

    

                       

   [     
 

(     )(     
 )
]   

      (   )       
  

 

(     )(     
 )
  

Proof: Consider the following positive definite real valued 

function 

𝑉  (   
 )  (    )  (    )  

Our computation of the derivative of  𝑉  with respect to t 

gives that 

 𝑉 
  

     (   
 )     (   

 )  

    (   
 )      (   

 )(    ) 

  ,   (   
 )     (   

 )-(    )  

Thus, under conditions (12a)-(12d) we obtain 

 𝑉 
  

  [√  (   
 )  √  (   

 )]
 
 

 ,√  (   
 ) √  (   

 )-  

 [√  (   
 )  √  (   

 )]
 
 

According to the above inequality we have 
   

  
 is negative 

definite. In consequence,  is globally asymptotically stable 

and we proved the theorem.             ■ 

 

5. Bifurcation Analysis 
In this section the local and Hopf bifurcations near the 

equilibrium points of system (1) are investigated using the 

Sotomayor’s theorem for local bifurcation and Liu approach 

for Hopf bifurcation. It is well known that the existence of 

non-hyperbolic equilibrium point is a necessary but not 

sufficient condition for bifurcation to occur. Now rewrite 

system (1) in the form: 

   ̇   ( )   (13) 

Where   (      )         (        )
  be the vector of 

interaction functions of system (1). Then, according to 

Jacobian matrix of the system (1), it is simple to verify that 

for any non-zero vector   (        )
  we have: 

   (     )(   )      
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(

 
 
 ,       (   )      -   ,

   
(     )

     -  
 

      
   

(     )
   

 

 )

 
 

 

                                 (14) 

and 

   (     )(     )  
    

   
 

(     )
 
(      )    (15) 

Moreover, the local bifurcation near the equilibrium points is 

investigated in the following theorems: 

Theorem (8):If the parameter   passes through the 

bifurcation value      , then system (1) near the vanished 

equilibrium point   ,  

1. Has no saddle node bifurcation. 

2. Undergoes a transcritical bifurcation 

Proof:According to the Jacobian matrix  (  )given by Eq. 

(6), system (1) at the equilibrium point    with      has 

zero eigenvalue, say   
   , and the Jacobian matrix 

becomes: 

 (    
 )    

  

               (

       

  (      )  
     

)          (16) 

Let,  , -  .  
, -
   

, -
   

, -
/
 

 and  , -  .  
, -
   

, -
 

  
, -
/
 

be the eigenvectors corresponding to the eigenvalue 

  
    of   

  and   
  , respectively. Thus    

  , -    gives 

 , -  (     ) . Also,   
   , -    gives that  , -  

.
      

     
    /

 

  

From Eq. (13) we have: 

  

  
   (   )  (

   
  
 
   
  
 
   
  
)
 

 

       ((    ),   (   )-    )
 
 

and then    (    
 )  (     ) , which gives  

( , -)
 
  (    

 )      So, according to Sotomayor’s 

theorem for local bifurcation, system (1) has no saddle-node 

bifurcation at     .  Also, we have: 

   (   )   

(
       (   )         (   )  

   
   

) 

Then we can obtain 

( , -)
 
(   (    

 ) , -)  
      

     
   

Moreover, substituting     
  and  , - in Eq. (14) gives 

   (    
 )( , -  , -)   (       )  

Hence, it is obtained that: 

( , -)
 
   (    

 )( , -  , -) 

     
      

     
   

Thus, according to Sotomayor’s theorem system (1) has a 

transcritical bifurcation at    as the parameter   passes 

through the value    and that complete the proof.            

Theorem (9): If      or the parameter   passes through 

the bifurcation value      
  (      )

   
, then system (1) 

near the disease free equilibrium    

1. Has no saddle node bifurcation. 

2. Undergoes a transcritical bifurcation. 

Proof: Clearly      if and only if     . 

Then, according to Eq. (7), the Jacobian matrix  (  ) with 

     has a zero eigenvalue, say   
   , and the  Jacobian 

matrix becomes: 

 (    
 )    

  (

         
       
    

    

) 

Where,    
    .  

Let,  , -  .  
, -
   

, -
   

, -
/
 

 and  , -  .  
, -
   

, -
 

  
, -
/
 

be the eigenvectors corresponding to the eigenvalue 

  
    of   

  and  
  , respectively. Thus   

  , -    gives 

 , -  .
             

      
  

   

   
  /

 

and  
   , -    gives 

 , -  .   
   
 

   
  /

 

  

From Eq. (13) we have: 

  

  
   (   )  (

   
  
 
   
  
 
   
  
)
 

 (     )  

And then    (    
 )  (     ) , which gives  

( , -)
 
  (    

 )      

So, according to Sotomayor’s theorem for local bifurcation, 

system (1) has no saddle-node bifurcation at     .  It's 

pretty easy to see that 

   (    
 )  (

   
   
   

) 

Then we obtain 

( , -)
 
(   (    

 ) , -)   
   
   

   

Moreover, substituting     
  and  , - in Eq. (14) gives 

   (    
 )( , -  , -)  (       )

  

Here  
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       .  
, -/

 

      
, -  

, -      
, -

 

              (     ).  
, -/

 

  

       
, -        

, -  

Hence, it's obtained that: 

( , -)
 
   (    

 )( , -  , -)   
   
 

   
     

Thus, according to Sotomayor’s theorem system (1) has a 

transcritical bifurcation at    as the parameter   passes 

through the value    and this complete the proof.          

Theorem (10): If the parameter    passes through the value 

  
  

   (             )

             
 ,then system (1) near coexistence 

equilibrium point    has a saddle node bifurcation provided 

that the following conditions hold. 

   
 

(     
 ) 
         (   )                          (17a) 

         
    (   )                                  (17b) 

Proof: According to Eq. (10), the Jacobian matrix  (  ) with 

     
 has a zero eigenvalue, say   

   , and the  Jacobian 

matrix becomes: 

 (     
 )    

  (

         
         
       

 
) 

Let,  , -  .  
, -
   

, -
   

, -
/
 

 and  , -  .  
, -
   

, -
 

  
, -
/
 

be the eigenvectors corresponding to the eigenvalue 

  
    of   

  and   
  , respectively.  

Thus    
  , -    gives: 

 , -  .
   (       )

             
 
   (       )

             
  /

 

. 

While    
   , -    gives: 

 , -  (
      

             
 

      
             

  )
 

  

From Eq. (13) we can have: 

  

   
    (    )  (

   
   

 
   
   

 
   
   

)
 

 

                     (      )  

and     (     
 )  (       ) , which gives  

( , -)
 
   (     

 )         Moreover, substituting 

     
  and  , - in Eq. (14) first and  then multiply the result 

by ( , -)
 
, we obtain 

( , -)
 
   (     

 )( , -  , -)   

 [  .  
, -/

 

   (   )  
, -  

, -]   
, -

 

 [     
, -  

   
(     

 ) 
.  

, -    
, -/] 

 .  
, -/

 

  (  
, -
   

, -
)  
, -

 

Using the conditions (17a) and (17b), it is pretty easy to see 

that   
, -
     

, -
     

, -
   and   

, -
   . Then, we can 

verify that: 

( , -)
 
   (     

 )( , -  , -)    

Thus, according to Sotomayor’s theorem system (1) has a 

saddle-node bifurcation at    as the parameter    passes 

through the value   
  and that complete the proof.    

Theorem (11): Assume that the conditions (9a)-(9b) hold, 

then system (1) undergoes Hopf bifurcation when the 

parameter  passes through the bifurcation value     ,  where  

    is a positive value given in the proof. 

Proof: According to Eq. (10),           can be 

rewritten as 

      ̂   ̂    ̂   ̂ 

here 

 ̂                       

 ̂                                 

            
        

           
        

  

            
           

   

Now, let 

      ̂  ̂⁄  

Due to the conditions (9a)-(9b), we can show that  ̂    and 

 ̂   . Now, use       , and apply the conditions (9a)-

(9b), we can have  

  ( 
  )      ( 

  )    and  (  )     

while, 
  

  
|
     

  ̂     
 

Therefore, according to the Liu approachfor Hopf bifurcation, 

system (1) undergoes Hopf bifurcation as   passes from   , 
and this complete the proof.  

 

6. NUEMRICAL SIMULATIONS AND DISCUSSION 

In this section some numerical simulation is carried out, first 

in order to verify the obtained analytical results and second to 

specify the control set of parameters that control the 

dynamics of the system. In consequence, system (1) is solved 

numerically using the following biologically feasible set of 

hypothetical parameters with different initial states and then 

the resulting trajectories are displayed graphically in the form 

of phase portrait and time series figures. 
                      

                 
                 
                   

                (18) 
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It is easy to check that for the parameters given in Eq. (18), 

the reproduction number is determined as          and the 

system (1) has a unique endemic equilibrium point which is 

globally asymptotically stable as shown in Fig. (1). 

Obviously, Fig. (1) shows clearly the approaches of the 

trajectories that started from different initial points to the 

endemic equilibrium point, which confirm the obtained 

results due to the value of the basic reproduction number 

    .  

Now in order to investigate the effect of varying each 

parameter on the dynamical behavior of system (1). System 

(1) is solved numerically for the data in (18) with varying one 

parameter each time.  

First the maximal medical resources rate   is varied at the 

values 0.1, 0.5, 0.7 with the rest of parameters as in (18) and 

then the trajectories of the system are drawn in Figs. (2)-(3) 

below. Straightforward computation shows that         
        and         corresponding the values of 

              respectively. From these two figures, it is 

observed that, although the value of basic reproduction 

number at       is          , the trajectories of 

system (1) approach asymptotically to endemic equilibrium 

point and disease free equilibrium point depending on the 

initial point as shown in Fig. (2). This is due to the existence 

of more than one endemic equilibrium point simultaneously 

with the existence of disease free equilibrium point, which 

leads to occurrence of backward bifurcation and losing the 

global stability of the disease free equilibrium point. 

However, it's observed that when      then the trajectories 

of system (1) approach asymptotically to the endemic 

equilibrium point for all the initial point as shown in Fig. (3) 

for different values of   and starting from (0.9,0.6,0.5).  

 

 

Fig. (1): Phase portrait of system (1), for the data given by (18), that approaches asymptotically to the endemic point                        

   (                      ). 

 

Fig. (2): Phase portrait of system (1) for       with other parameters as in (18) starting from different initial points. 

The release rate of the parasites   also varying at the values 

10, 15, 25, 80 respectively, keeping the rest of parameters as 

in (18) and then the resulting trajectories are drawn in the 

following two figures. It is easy to verify that         

        corresponding to value of         respectively, 

and the fourth order polynomial given by (4) has two positive 

roots (two endemic points) or zero positive roots. Therefore, 

according to Figs. (5)-(6), system (1) has no endemic point 
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for the smaller value         and the solution of system 

(1) approaches asymptotically to the disease free equilibrium 

point starting from any initial points. 

 

Fig. (3): The trajectories of system (1) as a function of time for different values of   with other parameters as in (18) starting at initial 

point (0.9, 0.6, 0.5). 

 

Fig. (4): The trajectories of system (1) as a function of time for different values of    with other parameters as in (18). 

On the other hand the system has two endemic equilibrium 

points simultaneously with disease free equilibrium point for 

the values of the basic reproduction number near than one 

such as        , which causing the occurrence of 

backward bifurcation and losing the global stability of the 

disease free point. Furthermore, increasing the value of   

more than 17.6, it is observed that      for example the 

value of                 corresponding to         
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respectively, and the solution of system (1) approaches 

asymptotically to the unique endemic point first and then the 

system losing its stability and approach asymptotically to 

periodic dynamics as increasing of        , which 

indicates to the occurrence of Hopf bifurcation. 

Also the infection rate   is varying at 0.00001, 0.00008, 

0.001 keeping the rest of parameters as in (18) and then the 

resulting trajectories of system (1) are drawn in the following 

figure. Clearly, the solution of system (1) approaches to 

disease free equilibrium point for           while it 

approaches to periodic dynamics for the values           

and         . This is due to the values of the basic 

reproduction number                  and         

that correspond to the                     and 

        respectively. Again, it is observed that the system 

approaches asymptotically to disease free point starting from 

every initial points due to disappear of the endemic point for 

sufficiently small value of   , while the solution of system 

(1) approaches to the periodic dynamics for sufficiently large 

value of         even when there is a unique endemic 

point. 

 

 

Fig. (5): The trajectories of system (1) as a function of time for      with other parameters as in (18) starting from two different 

initial points. 
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Fig. (6): The trajectories of system (1) as a function of time for different values of   with other parameters as in (18). 

 

Fig. (7): The trajectories of system (1) as a function of time for different values of   with other parameters as in (18). 

Further analysis of the effect of varying other parameters 

have been done and the obtained results are summarized in 

the following table. 
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Table (1): The dynamical behavior of system (1) as varying of some parameters keeping the rest of them as in (18). 

 

The range of parameter 

varying 

The 

range of  

   

The dynamical behavior of the solution that started at  

(150,100,50) (0.9,0.6,0.5) 

                is asymptotic stable 

              
     

periodic 

           is asymptotic stable 

                 is asymptotic stable    is asymptotic stable 

                 is asymptotic stable 

                 is asymptotic stable 

              
     

   is asymptotic stable    is asymptotic stable 

           is asymptotic stable 

        
     

   is asymptotic stable 

                is asymptotic stable    is asymptotic stable 

               is asymptotic stable 

         
     

   is asymptotic stable 

                    is asymptotic stable    is asymptotic stable 

                 
     

   is asymptotic stable 

         periodic 

 

According to the above table and figures, it is observed that 

the system (1) is rich in dynamics and undergoes different 

types of bifurcations including Hopf bifurcation and 

backward bifurcation.  

 

REFRECNCES 
 

[1] Hussein Khaled, " Schistosomiasis and Cancer in Egypt: 

Review," Journal of Advanced Research,4 (2013) 461-

466. 

[2] S. Mushayabasa and C. P. Bhunu, "Modeling 

Schistosomiasis and HIV/AIDS Codynamics, " 

Computational and Mathematical Methods in Medicine 

Volume 2011, Article ID 846174, 15p.,  

[3] Daniel G Colley, Amaya L Bustinduy, W Evan Secor, and 

Charles H King,"Human schistosomiasis," Lancet. 2014 

June 28; 383(9936): 2253–2264.  

 [4] C. P. Bhunu, J. M. Tchuenche, W. Garira, G. 

Magombedze, and S. Mushayabasa, "Modeling the 

effects of schistosomiasis on the transmission dynamics 

of HIV/AIDS," Journal of Biological Systems, vol. 18, 

no. 2, (2010) 277–297,. 

[5] Macdonald,  G., "The dynamics of  helminth  

coexistences,  with special reference  to schistosomes,".  

Trans. Roy. Soc. Trop. Med.  Hyg. 59(1965) 489-506. 

[6] Nasell, I. and Hirsch,  W.  M., "Mathematical  models  of  

some parasitic  diseases  involving an intermediate 

host,". Report No.  IMM393, Courant Institute of Math. 

Sciences, New York. (1971). 

[7] Nasell, I. and Hirsch,  W.  M., "The  transition dynamics  

of  schistosomiasis,".  Comm.  Pure. Appl.  Math.  26, 

(1973) 395-453. 

[8] Feng Z, Li CC, Milner FA, "Schistosomiasis models with 

density dependence and age of infection in snail 

dynamics," Math Biosci, 177 (178)(2002) 271–286,. 

 

 

[9] E.J. Allen, H.D. Victory, Jr., "Modelling and simulation 

of a schistosomiasis infection with biological control," 

Acta Tropica 87 (2003) 251-267. 

[10] Besigye-Bafaki G, "A 2-dimensional model for the 

transmission dynamics of schistosomiasis in the human-

snail hosts," Am J Appl Sci,  3(5) (2006)1846–1852. 

[11] P. Zhang, Z. Feng, and F. Milner, "A schistosomiasis 

model with an age-structure in human hosts and its 

application to treatment strategies," Mathematical 

Biosciences, vol. 205, no. 1, (2007) 83–107.  

[12] E.T. Chiyaka, W. Garira, "Mathematical analysis of the 

transmission dynamics of schistosomiasis in the human–

snail hosts," J. Biol. Syst. 17 (03) (2009) 397–423. 

[13] E.T. Chiyaka, G. Magombedze, L. Mutimbu, "Modelling 

within host parasite dynamics of schistosomiasis," 

Comput. Math. Methods Med. 11 (5) (2010) 255– 280. 

[14] Longxing Qi and Jing-an Cui, “A Schistosomiasis Model 

with Mating Structure,”  Abstract and Applied Analysis, 

vol. 2013, Article ID 741386, 9 pages, 2013. 

doi:10.1155/2013/741386. 

[15] Raid K. Naji and Hassan F. Ridha, "Modeling and 

analysis of bilharzia disease," Mathematical Theory and 

Modeling, Vol.5, No.13 (2015) 101-115. 

[16] C. Ding, N Tao, Y Sun, Y Zhu, "The effect of time 

delays on transmission dynamics of schistosomiasis," 

Chaos, Solitons & Fractals, 91(2016) 360–371. 

[17]  J. Wei and J.-A. Cui, "Dynamics of sis epidemic model 

with the standard incidence rate and saturated treatment 

function,"  Int. J. Biomath. 05, 1260003 (2012) [18 

pages].  

[18]  L.  Perko,  "Differential  Equation  and  Dynamical  

Systems," Third  Edition, Springer -Verlag Inc, New 

York, 2001 

[19] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, 

On the defnition and the computation of the basic 

http://www.sciencedirect.com/science/article/pii/S0960077916302132
http://www.sciencedirect.com/science/article/pii/S0960077916302132


32                                                                             ISSN 1013-5316; CODEN: SINTE 8                                Sci.Int.(Lahore),30(1),21-32,2018 

January-February 

reproduction ratio R0 in models for infectious diseases 

in heterogeneous populations, Journal of Mathematical 

Biology, 28 (1990), pp. 365–382. 

[20] P. Van den Driessche and J. Watmough, Reproduction 

numbers and sub-threshold endemic equilibria for 

compartmental models of disease transmission, 

Mathematical Biosciences, 180 (2002), pp. 29–48. 

 [21]  W.  M.  Liu,  "Criterion  of  Hopf  bifurcation  without  

using  eigenvalues,"  J. Math. Anal. Appl., 182(1), pp. 

250–256, 1994. 

 


